Skip to content

Sharing successes, challenges and daily happenings in the Department of Medicine

Medicine Matters Home Article of the Week Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture

Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture

ARTICLE: Spatiotemporal transcriptomic mapping of regenerative inflammation in skeletal muscle reveals a dynamic multilayered tissue architecture

AUTHORS: Andreas Patsalos, Laszlo Halasz, Darby Oleksak, Xiaoyan Wei, Gergely Nagy, Petros Tzerpos, Thomas Conrad, David W Hammers, H Lee Sweeney, Laszlo Nagy

JOURNAL: J Clin Invest. 2024 Aug 27;134(20):e173858. doi: 10.1172/JCI173858.

Abstract

Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and DCs and validated markers (e.g., glycoprotein NMB [GPNMB]) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.

For the full article, click here.

For a link to the abstract, click here.

Johns Hopkins All Children's: Characterizing regenerative inflammation using high-dimensional biological approaches in acute and chronic inflammation

nv-author-image

Kelsey Bennett

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.