Skip to content

Medicine Matters

Sharing successes, challenges and daily happenings in the Department of Medicine

Medicine Matters Home Article of the Week MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII

MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII

ARTICLE: MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII

AUTHORS: Klitos Konstantinidis, Vassilios J. Bezzerides, Lo Lai, Holly M. Isbell, An-Chi Wei, Yuejin Wu, Meera C. Viswanathan, Ian D. Blum, Jonathan M. Granger, Danielle Heims-Waldron, Donghui Zhang, Elizabeth D. Luczak, Kevin R. Murphy, Fujian Lu, Daniel H. Gratz, Bruno Manta, Qiang Wang, Qinchuan Wang, Alex L. Kolodkin, Vadim N. Gladyshev, Thomas J. Hund, William T. Pu, Mark N. Wu, Anthony Cammarato, Mario A. Bianchet, Madeline A. Shea, Rodney L. Levine, and Mark E. Anderson

JOURNAL: J Clin Invest. 2020 Aug 4;133181. doi: 10.1172/JCI133181. Online ahead of print.

Abstract

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.

For the full article, click here.

For a link to the abstract, click here.

Related: Konstantinidis Receives Best Poster Award

Author's Take Video:

nv-author-image

Kelsey Bennett